

244

P: ISSN NO.: 2394-0344 RNI No.UPBIL/2016/67980 VOL-3* ISSUE-8* (Part-1) November- 2018

E: ISSN NO.: 2455-0817 Remarking An Analisation

 Application of Association Mining
Algorithms to Market Basket Analysis

for Decision Making

Shishu Pal Singh

Assistant Professor,
Dept. of Computer Science,
Government Post Graduate
College,
Noida, Gautam Buddh Nagar,
Uttar Pradesh, India

Keywords: Item Sets, Market basket, Association Rule, Implication Rule,

Graph.
Introduction

In this paper we discuss the problem of identifying market baskets
in huge databases. Current database capacities associated with bar code
technology and increased use of the Internet has led to a huge collection of
customer transaction data.

Now companies from different sectors such as insurance,
banking, airlines and telecommunications have become much more
customers oriented than never. To get the customer's personal data there
are two key data sources using the customer's personal data and the
product – oriented data. In order to collect customer’s social, demographic,
personality, geographic or lifestyle data, costly surveys are required. While,
product-oriented data, about the frequency and the quantity of a particular
item which a customer buys is already exists in the companies’ database.
In order to setup customer relationship strategy one needs to find out that
who the best customers are, how they respond to a campaign and are
capable to predict the next purchasing item each customer will buy next
time, thus implementing a cross-selling strategy.

In second section we define the market basket problem and
discuss the Apriori algorithm that gives solution to this problem. As this
algorithm has a non-polynomial time complexity, we discuss related work
that tries to overcome this drawback.

In third section we have discussed an efficient algorithm – DIC
(Dynamic Itemset Counting), which break the database into parts and
introduce the concept of partial parallel computing to increase the efficiency
of the algorithm.

In next section we gives a swifter algorithm - Similis, which first of
all convert the provided data set into a graph-based structure, and then the
new problem, the weighted clique problem, is solved using a meta-heuristic
approach. Each maximum-weighted clique corresponds to a quasi-most-
frequent itemset.

Abstract
When a customer buys some items together from a store during

his single visit is termed as market basket and the items are termed as
itemset. Analysis of such market basket is very helpful for the
implementation of cross – selling strategies. There are many algorithms
to find market basket. Some of them are better in some way to others.
This paper gives a comparative study of various algorithms of finding
association rules from market basket data.

In this paper we discuss the problem of analyzing market-
basket data and discussed several important contributions. In the
beginning, we have given an algorithm to find large itemsets using fewer
passes over the data than classic algorithms, and also using fewer
candidate itemsets than other methods based on sampling. Here given
the idea of item reordering, this can improve the low-level efficiency of
the algorithm.

Then, we give a new way of generating “implication rules”.
Thereafter we discussed a new approach which uses data-condensed
structures. In this approach, the condensed data is generated by
converting the market basket problem in a maximum weighted clique
problem. Initially, the provided data set is transformed into a graph-based
structure and then the maximum-weighted clique problem is solved using
a meta-heuristic approach in order to find the most frequent itemsets.

245

P: ISSN NO.: 2394-0344 RNI No.UPBIL/2016/67980 VOL-3* ISSUE-8* (Part-1) November- 2018

E: ISSN NO.: 2455-0817 Remarking An Analisation

At the end, in last section the related works

in the area are given with little description.
During this paper we refer to the market

basket (or itemset) whenever it is related to physical
data, on the other hand, if it refers to condensed data
the terms graph-based structure (or clique) are used.
Market Basket Analysis
Definition

The file having records of set of purchases is
given as input to the market basket analysis. A market
basket is constituted of items purchased together in a
single visit to a store. The most important fields are
the customer identification and item identification, not
concerned with the quantity bought and the price.
Each transaction represents one purchase, which
occurred at a specific time and place, and may be
associated to an identified customer (usually having a
card) or to a non-identified customer.
Definition 1

The record file with multiple transactions can
be represented in a relational database table
T(customer, item). Corresponding to each attribute
there is a non-empty set called as domain. The
domain (customer) = {1, 2, 3,. . . n} and the
domain(item) = {a, b, c, . . . , z}. The table T(customer,
item) can be read as the set of all customer
transactions Trans ={t1, t2, t3, . . . , tk } where each
transaction has a subset of items tk = {ia, ib, ic . . . }.
The relational table T(customer, item) may also be
read as the set of item-clientele Itc={i1, i2, i3, . . . }
where each item-clientele contains a subset of
customers ik={c1, c2,c3,. . . }.

On the base of attributes (customer, item),
the market basket can be defined as the N items
which are purchased together more frequently. Once
the market basket with N items is known, we can shift
to cross-selling. Further we identify all the customers
having bought N-m items of the basket and then
suggest them the purchase of some m missing items.
In making decisions in marketing applications, the
market basket analysis is a important tool supporting
the implementation of cross-selling strategies. For
example, if any specific customer's buying habits fits
into a known market basket, the next item will be
proposed.
Large itemsets finding Algorithms

Much research has focused on deriving
efficient algorithms for finding large itmesets (step 1).
The most well-known algorithm is Apriori which, as all
algorithms for finding large itemsets, relies on the
property that an itemset can only be large if and only if
all of its subsets are large. It proceeds level-wise. First
it counts all the 1-itemsets and finds counts which
exceed the threshold – the large 1-itemsets. Then it
combines those to form candidate (potentially large)

2-itmesets, counts them and determines which are the
large 2-itemsets. It continues by combining the large
2-itemsets to form candidate 3-itemsets, counting
them and determining which are the large 3-itemsets
and so forth.
Implication Rules

Our contribution to functionality in market
basket analysis is implication rules based on

conviction, which we believe is a more useful and

intuitive measure than confidence and interest. Unlike
confidence, conviction is normalized based on both
the antecedent and the consequent of the rule like the
statistical notion of correlation. Furthermore, unlike
interest, it is directional and measures of these two
features, implication rules can produce useful and
intuitive results on a wide variety of a data. For

example, the rule past active duty in military no

service in Vietnam has a very high confidence of 0.9.
Yet it is clearly misleading since having past military
service only increases the chances of having served
in Vietnam. In tests on census data, the advantages
of conviction over rules based on confidence or
interest are evident.
Apriori Algorithm

In contradiction to the earlier algorithm, the
Apriori Algorithm [Agrawal et al. 1996] takes all of the
transactions in the database into consideration in
order to define the market basket. The market basket
can be represented with association rules, with a left

and a right side L R. For example, given an

itemset {A,B,C} the rule {B,C} {A} should be read

as follows: if a customer bought {B,C} then there are
high chances that he would buy {A} too. This
approach was initially used in pattern recognition and
it became popular with the discovery of the following
rule: "on Thursdays, grocery store customers often
purchase diapers and beer together" [Berry and Linoff
1997].

To find the association rules two measures
can be used - the support measure and the
confidence measure. Let {A,B} is an itemset and the

let A B be the association rule. The support

measure is equal to the relative frequency or P({A,B}).
The confidence measure is given by the conditional
probability of B given A, P(B|A), which is equal to
P({A,B})/P(A).

The initial step of the Apriori algorithm gives
sets of market baskets. Ik is defined as the set of
frequent items with k items bought together. First, the
algorithm finds the items with a frequency that is
higher than the min sup, generating I1. In the
following steps, for each Ik it generates the Ik+1
candidates, such as Ik Ik+1. For each Ik+1 candidate, the
algorithm removes the baskets, which are lower than
the min sup. The cycle ends when it reaches Imax_ k.

In the second step, the Apriori algorithm
gives sets of market baskets and then generates

association rules L R. For each rule, the support
measure and the confidence measure get calculated.
In order to implement the cross-selling strategy the
data analysts choose, firstly, the dimension of the
basket, secondly, they choose the rules with the
highest support measure. Finally, those having
highest confidence measure are chosen, among
those with the highest support measure.

The outputs of the Apriori algorithm are easy
to understand and many new patterns can be
identified. However, the sheer number of association
rules may make the interpretation of the results
difficult. Another weakness is the computational times,
due to the exponential complexity of the algorithm.

246

P: ISSN NO.: 2394-0344 RNI No.UPBIL/2016/67980 VOL-3* ISSUE-8* (Part-1) November- 2018

E: ISSN NO.: 2455-0817 Remarking An Analisation

Let LK be the set of large k-itemsets. For example, L3
might contain {{A,B,C}, {A,B,D}, {A,D,F}, …}. Let Ck be
the set of candidate k-itemsets; it is always the
superset of Lk.
Here is the algorithm:
Result := Ø;

K := 1;
C1 = set of all 1-itemsets;
While Ck ≠ Ø do

 create a counter for each itemset in Ck;
 forall transactions in database do

 increment the counters of itemsets in Ck

which occur in the transaction;
 Lk := All candidates in Ck
 Which exceed the support threshold;
 Result := Result U Lk ;
 Ck+1 := all k + 1-itemsets
 Which have all of their k-item subsets in Lk
 K := k + 1;
End

Thus, the algorithm performs as many
passes over the data as the maximum number of
elements in a candidate itemset, checking at pass k
the support for each of the candidates in Ck. The two
important factors which govern performance are the
number of passes made over all the data and the
efficiency of those passes.
 DIC Algorithm

To overcome both issues of Apriori algorithm
we discuss Dynamic Itemset Counting (DIC), the
algorithm which reduces the number of passes made
over the data while keeping the number of itemsets
which are counted in any pass relatively lesser as
compared to methods based on sampling.

DIC discussed the high-level issues of when
to count which itemsets and is a substantial speedup
over Apriori, particularly when Apriori requires many
passes.

The algorithm which counts complete large
itemsets must find and count all of the large itemsets
and the minimal small itemsets (that is, all of the
boxes and circles). The DIC algorithm, given here,
marks itemsets in four different possible ways:

1. Solid Box – confirmed large itemset – an itemset
we have finished counting that exceed the
support threshold.

2. Solid Circle – confirmed small itemset – an
itemset we have finished counting that is below
the support threshold.

3. Dashed Box – suspected large itemset – an
itemset we are still counting that exceeds the
support threshold.

4. Dashed Circle – suspected small itemset – an
itemset we are still counting that is below the
support threshold.

The DIC algorithm work as follows:
1. Solid box represents the empty itemset. All the 1-

itemset are represented with dashed circles. All
other itemsets are unmarked. (See Figure 3.)

2. Read M transactions. We experimented with
values of M ranging from 100 to 10,000. For each
transaction, increment the respective counters for
the itemsets marked with dashes.

3. if a dashed circle has a count that exceeds the
support threshold, turn it into a dashed square. If
any immediate superset of it has all of its subsets
as solid or dashed square, add a new counter for
it and make it a dashed circle. (See Figure 4 and
5.)

4. If a dashed itemset has been counted through all
the transactions, make it solid and stop counting
it.

5. If we are at the end of the transaction file, rewind
to the beginning. (See Figure 6.)

6. If any dashed itemsets remain, go to step 2.
This way DIC starts counting just the 1-

itemsets and the quickly adds counters 2,3,4,… ,k-
itemsets. After just a few passes over the data
(usually less than two for small values of M) it finishes
counting all the itemsets. Ideally, we would want M to
be as small as possible so we can start counting
itemsets very early in step 3. However, step 3 and 4
incur considerable overhead so we do not reduce M
below 100.

247

P: ISSN NO.: 2394-0344 RNI No.UPBIL/2016/67980 VOL-3* ISSUE-8* (Part-1) November- 2018

E: ISSN NO.: 2455-0817 Remarking An Analisation

248

P: ISSN NO.: 2394-0344 RNI No.UPBIL/2016/67980 VOL-3* ISSUE-8* (Part-1) November- 2018

E: ISSN NO.: 2455-0817 Remarking An Analisation

The Data Structure

The implementation of the DIC algorithm
requires a data structure which can keep track of
many itemsets. In particular, it must support the
following operations:
1. Add new itemsets.
2. Maintain a counter for every itemset. When

transactions are read, increment the counters of
those active itemsets which occur in the
trasaction. This must be very fast as it is the
bottleneck of the whole process.

3. Maintain itemset states by managing trasitions
from active to counted (dashed to solid) and from
small to large (circle to square). Detect when
these transitions should occur.

4. When itemsets do become large, determine what
new itemsets should be added as dashed circles
since they could now potentially be large.

The data structure used for DIC is exactly
same as the hash tree used for Apriori with some
extra information stored at each node. It is a tree
having following properties. Each itemset is sorted by
its items. Every itemset we are counting or have
counted has a node associated with it, as do all of its
prefixes. The empty itemset is the root node. All the 1-

itemset are attached to the root node, and their
branches are labled by the item they represent. All
other itemsets are attached to their prefix containing
all but their last item. They are labeled by that last
item.
Significance of DIC

The main benefit of DIC is its performance. If
the data is fairly homogeneous throughout the file and
the interval M is reasonably small, this algorithm
usually makes on the order of two passes. This
makes the algorithm reasonably faster than Apriori
which must make as many passes as the maximum
size of a candidate itemset. If the given data is not
fairly homogeneous, the algorithm may run through it
in a random order.
Similis Algorithm

The Similis algorithm finds the most frequent
itemsets in two steps – data transformation and
searching.

In the first step we input table T(customer,
item) and get output a weighted graph G(V,E). In
second step, input given is the graph G(V,E) and
market basket size k and get output a market basket
with k items. As per the market basket dimensions

249

P: ISSN NO.: 2394-0344 RNI No.UPBIL/2016/67980 VOL-3* ISSUE-8* (Part-1) November- 2018

E: ISSN NO.: 2455-0817 Remarking An Analisation

required, the last step of searching can run more than
once.
 After first step a weighted graph G(V,E) is
developed depending on the similarities of the items.
In the graph G(V,E) the vertex set V denotes the
itemset in the market basket and weighted edge
(i,j)2E indicate the similarity between item i and item j.
the two items are same if they were bought together
in number of transactions.

At the end, to get the clique with maximum
weight which leads to most frequent market basket,
Primal – Tabu Meta – heuristic is used. The Similis
Algorithm is as follows [1]:
The Similis Algorithm
STEP 1 - Data Transformation

input: table T(customer, item)
Generate graph G(V,E) using the similarities between
items
output: weighted graph G(V,E)
STEP 2 – Find clique with maximum weight

input: weighted graph G(V,E) and size k

Find in G(V,E) the clique S with k vertexes with the
maximum weight, using the Primal- Tabu Meta-
heuristic.
output: weighted clique S of size k that correspond to
the most frequent market basket with k items.
Related Work

Apriori algorithm has an exponential time
complexity, and several passes over the input table
are needed. To overcome these handicaps some
proposals have been made.

The Apriori algorithm performs as many
passes over the data as the size of the itemsets. The
Dynamic Itemset Counting, the DIC Algorithm,
reduces the number of passes made over the data,
using itemsets forming a large lattice structure [Brin et
al. 1997]. DIC starts counting the 1-itemset and then
adds counters 2, 3, 4, . . . , k itemsets. Thus, after a
few passes over the data it _nishes counting all the
itemsets. Running DIC and Apriori, DIC outperformed
Apriori in the majority of cases.

In [Aggarwal, Wolf and Yu 1999] a method
for indexing market basket data for similarity search is
discussed. The index structure requires the partition
of the set of all k-itemsets into subsets. They create a
graph so that each node corresponds to an item, and
for each pair of items a weight is added, which is the
inverse of the support measure. Finally, the set of
items is divided into k-sets. This algorithm shows
good scalability with an increase in the number of
transactions.

Just like the DIC algorithm, the MARC
algorithm [Liu, Lu and Lu 2001] avoids several passes
over the databases. MARC algorithm will use the
summarized cluster information. The algorithm
analyzes the similarities between transactions and
creates clusters of similar transactions.

In the GCTD algorithm [Chen et al. 2002],
the concepts of similarity relationships and the
clustering problem appear together in order to
discover connected components in an undirected
graph.

The condensed data representation is
extremely useful [Jeudy and Boulicaut 2002], taking
into account that the Apriori algorithm has a better
performance using sparse data rather than using
highly correlated data. The latter is considered difficult
or even intractable.

In the developing of recommender systems,
i.e., systems that personalize recommendations of
items based on the customer's preferences, in [Lin,
Alvarez and Ruiz 2002] the authors present an
algorithm that does not require the min sup measure.
Having previously defined min sup, a negative result
can be expected, by cutting down either too many or
too few itemsets.

In order to obtain frequent market baskets in
reduced computational times, in the next section we
present the Similis Algorithm [Cavique e Themido
2001] [Cavique 2002]. This algorithm reuses some of
the mentioned strategies, such as the reduction of
passes over the database, the reduction of the
number of parameters (e.g. min sup) and the
aggregate measures (e.g. similarity measures).

Some important relevant work was done by
Toivonen using sampling. His technique was to
sample the data using a reduced threshold for safety,
and then count the necessary itemsets over the whole
data in just one pass. However, this pays the added
penalty of having to count more itemsets due to the
reduced threshold. This can be quite costly,
particularly for databases like the census data.
Instead of being conservative, our algorithm bravely
marches on, on the assumption that it will alter come
back to anything missed with little penalty.
Conclusion

Here in the beginning of the paper,
importance of Market Basket Analysis is explained
thereafter Apriori algorithm is presented. As in Apriori,
many passes of data is occurred which leads to
exponential time complexity of this algorithm and
becomes its main drawback. Such algorithm is
suitable when using the less items or sparse data but
as we use correlated data the performance degrades
remarkably. If we decrease the items number in the
provided data using the min sup parameter, due to
min sup independency from data table it may gives
unpredictable data reductions. In the last Apriori gives
large number of associative rules, out of which very
less rules are utilized during cross – selling strategies.

We found that the DIC algorithm, particularly
when combined with randomization provided a
significant performance boost for finding large
tiemsets. Item reordering did not work as well as we
had hoped. However in some isolated earlier tests it
seemed to make a big difference. We suspect that a
different method for determining the item ordering
might make this technique useful. Selecting the
interval M made a big deference in performance and
warrants more investigation. In particular, we may
consider a varying interval depending on how many
itemsets were added at the last checkpoint.

There are a number of possible extensions
to DIC. Because of its dynamic nature, it is very
flexible and can be adapted to parallel and
incremental mining.

250

P: ISSN NO.: 2394-0344 RNI No.UPBIL/2016/67980 VOL-3* ISSUE-8* (Part-1) November- 2018

E: ISSN NO.: 2455-0817 Remarking An Analisation

After discussing all the drawbacks of Apriori algorithm,
we suggest the Similis algorithm due to its better
computational complexity.
References
1. L. Cavique, Graph Based structure for the Market

Basket Analysis, Investigacao Operacional, 24
[2004], 233 - 246.

2. L. Cavique and I Themido, A New Algorithm for
the Market Basket Analysis, Internal Report
CESUR-IST, UTL, Portugal, 2001.

3. C.C. Aggarwal, J.L. Wolf and P.S. Yu, A New
Method for Similarity Indexing of Market Basket
Data, in Proceedings of the 1999 ACM SIGMOD
Conference, Philadelphia PA, 1999, pp.407-418.

4. E. Balas, W. Niehaus, Optimized Crossover-
Based Genetic Algorithms will be the Maximum
Cardinality and Maximum Weight Clique
Problems, Journal of Heuristics, Kluwer
Academic Publishers, 4, 1998, pp. 107-122.

5. S. Brin, R. Motwani, J.D. Ullman and S.Tsur,
Dynamic Itemset Counting and Implication Rules
for Market Basket Data, in Proceedings of the
1997 ACM SIGMOD Conference, Tucson,
Arizona, 1997, pp.255-264.

6. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen
and A. Verkamo, Fast Discovery of Association
Rules, in Advances in Knowledge and Data
Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P.
Smyth and R. Uthurusamy Eds, MIT Press, 1996.

7. H. Toivonen. Sampling large databases for
association rules. Proc. of the Int’l Conf. on Very
Large Data Bases (VLDB), 1996.

8. R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In Proceedings of the
20th VLDB Conference, Santiago, Chile, 1994.

9. R. Agrawal, T. Imilienski, and A. Swami. Mining
Association Rules between Sets of Items in Large
Databases, Proc. Of the ACM SIGMOD int’l Conf.
on Management of Data, pages 207-216, May
1993.

10. R. Agrawal, T. Imilienski, and A. Swami. Data
base Mining: A Performance Perspective, IEEE
Transactions on Knowledge and Data
Engineering, 5(6):914-925, December 1993.

